Residual Force Enhancement in humans
Moving beyond purely mechanical properties

Daniel Hahn
FACULTY OF SPORT SCIENCE
Human Movement Science & Biomechanics
Residual Force Enhancement (RFE)…

…as mechanical property of voluntarily activated human muscle:

\[\Delta F = \text{RFE} \approx 10\% \]

Residual Force Enhancement (RFE)…

…as mechanical property of voluntarily activated human muscle:

\[\Delta F = RFE \approx 10\% \]

Residual Force Enhancement (RFE)...

...as activation reduction (AR) at a given level of force/torque:

- 60s torque-control contractions at 50% knee extensor MVC

\[\Delta VL = -14.2\% \]
\[\Delta RF = -20.6\% \]
\[\Delta VM = +0.9\% \]
Residual Force Enhancement (RFE)…

…as higher force/torque at a given level of EMG activity or
…as activation reduction (AR) at a given level of force/torque

1. **Modulation of neural control?**

 Altenburg et al. (2008), Appl Physiol Nutr Metab 33(6), 1086-1095

 → reduced sEMG but **no reduction** in discharge rate of single motor units (MU)

 → potential derecruitment of MU during AR

 Hahn et al. (2012), PLoS One 7(11), e49907

 → Cortical and spinal excitability during the presence of RFE
Modulation of neural control during RFE

Methods & Experimental Protocol

- calf muscles of n = 10 subjects
 (29.1 ± 6.6 yr, 1.77 ± 0.08 m and 73.4 ± 11.8 kg)

- EMG of soleus (SOL), medial gastroc. (MG) and tibialis anterior muscles (TA)

- 2 different plantar flexor contractions:
 isometric MVC at 20° dorsiflexion
 active lengthening MVC, 0-20° DF, ω = 30°s⁻¹

- 3 different superimposed stimulations:
 electrical nerve stimulation (n. tibialis)
 electrical stimulation of the cervicomedullary junction → spinal excitability (CMEP)
 transcranial magnetic stimulation of the motor cortex → cortical & spinal excitability (MEP)
Modulation of neural control during RFE

Results

→ 9±8% RFE 2.5-3 seconds following active lengthening
Modulation of neural control during RFE

Results

- increased MEPs during RFE
Modulation of neural control during RFE

Results

- increased MEPs during RFE
- unchanged CMEPs
Modulation of neural control during RFE

Results

- greater MEPs during RFE
 → **cortical & spinal excitability**

- unchanged CMEPs
 → **spinal excitability**

- unchanged M-wave, enlarged V-wave

→ **increased cortical excitability during the presence of RFE**

Do these changes in neural control contribute to RFE?
Residual Force Enhancement (RFE)…
…as higher force/torque at a given level of EMG activity or
…as activation reduction (AR) at a given level of force/torque

1. **Modulation of neural control?**
 → Yes, but unclear how this modulation underlies RFE

2. **Reduction in metabolic cost?**

 Joumaa & Herzog. (2013), J Biomech 46, 1135-1139
 → 17.2±4.1% reduced ATPase activity per unit of force in skinned fibres following active lengthening.
 → Does this also apply for an in vivo human muscle?
Reduction in metabolic cost

Methods & Experimental Protocol

- QF, 60% MVC torque control, 60s
- stretch 80-100°, \(\omega = 60°\text{s}^{-1} \)
- 4h rest between contractions
- EMG of VL, RF, VM
- near-infrared spectroscopy (NIRS) over VL, VM
 - oxy- \((O_2\text{HB})\), deoxygenated hemoglobin (HHB); total hemoglobin (tHB)
 - arterial occlusion allows indirect analysis of energetic cost
 (de Ruiter et al. 2005 *JAP*, 2007 *MSSE*)
Reduction in metabolic cost - Raw Data NIRS

- O_2Hb (oxyhemoglobin)
- HHb (deoxyhemoglobin)
- tHb (total hemoglobin)

delta concentration [μM] vs. Time [s]
Reduction in metabolic cost - Raw Data NIRS

deoxyhemoglobin (HHb)

O$_2$HB (O$_2$Hb)

HHB

tHb

Time [s]

delta concentration [µM]
Reduction in metabolic cost - *exemplar Result*

\[\text{oxygen consumption} = \text{slope } r \left[\% \text{ of } \Delta \text{max HHB} \right] \]

(de Ruiter et al. 2005)

→ reduced slopes for HHb and O\(_2\)Hb during stretch contractions
Residual Force Enhancement (RFE)…
…as higher force/torque at a given level of EMG activity or…
…as activation reduction (AR) at a given level of force/torque

1. **Modulation of neural control?**
 → Yes, but unclear how this modulation underlies RFE

2. **Reduction in metabolic cost?**
 → 17.2±4.1% reduced ATPase activity per unit of force in skinned fibres following active lengthening.
 → Preliminary results point towards potential benefits in oxygen consumption during RFE in humans

3. **Relevance of RFE for human locomotion?**
RFE & human locomotion...

...like walking, running, hopping, [...]

- involvement of multiple lower extremity joints synergistic muscles
- joints slightly flexed, i.e. main muscles (*triceps surae, quadriceps femoris*) acting on their ascending limbs of the *force-length relation*
- submaximal muscle activation
- contractions represent *stretch-shortening cycles (SSC)*

→ *Does RFE occur during these kind of contraction conditions?*
→ *Do RFE mechanisms contribute to enhanced force production during SSC?*
RFE during submaximal multi-joint contractions

- n = 14 subjects, ROM = 30-50° knee flexion, ω = 60°s⁻¹
- submaximal activation at 30% of maximum VM EMG
- EMG, 3D-force plates, kinematics, inverse dynamics

(for methods refer to Hahn et al. 2010, Seiberl et al. 2013)
RFE during submaximal multi-joint contractions

→ no difference between contractions

→ residual force enhancement

EMG activity [%MVA]

Force [N]
RFE during submaximal multi-joint contractions

→ phenomenon of responders and non-responders reported earlier
Residual Force Enhancement (RFE)…

…as higher force/torque at a given level of EMG activity or…as activation reduction (AR) at a given level of force/torque

1. Modulation of neural control?

→ Yes, but unclear how this modulation underlies RFE

2. Reduction in metabolic cost?

Joumaa & Herzog. (2013), J Biomech 46, 1135-1139

→ 17.2±4.1% reduced ATPase activity per unit of force in skinned fibres following active lengthening.

→ Preliminary results point towards potential benefits in oxygen consumption

3. Relevance of RFE for human locomotion and SSC?

→ not finally confirmed and/or not investigated
Acknowledgements

Dr. Wolfgang Seiberl
Biomechanics in Sports
Faculty of Sport & Health Science
Technische Universität München, Germany

Florian Paternoster
Biomechanics in Sports
Faculty of Sport & Health Science
Technische Universität München, Germany

Dr. Walter Herzog
The University of Calgary
Faculty of Kinesiology
Human Performance Laboratory

Dr. Andrew Cresswell
The University of Queensland
School of Human Movement Studies
Centre for Sensorimotor Performance

Dr. Tim Carroll
The University of Queensland
School of Human Movement Studies
Centre for Sensorimotor Performance

Ben Hoffman
The University of Queensland
School of Human Movement Studies
Centre for Sensorimotor Performance
Thank you for your attention!